20 000 профессионалов proAV > 1500 компаний > 570 городов > 6 стран ближнего зарубежья > 1 сообщество

Присоединяйтесь!

Подписка на дайджест
Рубрикатор статей

Базовые измерительные приборы. Осциллограф: «рисующий сигнал»

«ГРАФО» ЗНАЧИТ «РИСУЮ»

oscillograf-1.jpg

ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ ФОРМЫ 3 РАДИОТЕХНИЧЕСКИХ СИГНАЛОВ

Мы живем в технологической цивилизации. Люди создали вторую природу – мир механизмов, сложнейших машин, радиоэлектронных устройств, которые используют практически весь известный диапазон электромагнитных излучений. Но человеческие органы зрения способны воспринимать только видимый свет. Мы не можем увидеть электрический ток, радиоволны, не можем без помощи приборов измерить даже простейшие параметры электрического сигнала. При работе со сложной радиоэлектронной аппаратурой часто возникает задача воспроизведения формы сигналов, т.е. зависимости мгновенного значения напряжения от времени. Её решение позволяет сразу оценить многие параметры колебаний, например, искажение их формы, наличие помех и многое другое. Воспроизведение формы сигналов играет важную роль при проверке и настройке аудио- и видеотрактов аппаратуры.

Для визуализации сигналов используются приборы, которые называются осциллографами, однако определение формы сигналов возможно не только во временной области, но и в частотной. Задачу воспроизведения сигнала в частотной области решают анализаторы спектра и измерители амплитудно-частотных характеристик, о которых будет рассказано в заключительной части этой брошюры.

ЭЛЕКТРОННЫЕ ОСЦИЛЛОГРАФЫ

В настоящее время одним из наиболее распространенных радиоизмерительных приборов является электронный осциллограф, и это не удивительно, ведь он обладает исключительной наглядностью представления исследуемых сигналов, удобством и универсальностью. Осциллограф позволяет рассмотреть любые электрические процессы, даже если сигнал появляется в случайный момент времени и длится миллиардные доли секунды. По изображению на экране осциллографа можно определить амплитуду рассматриваемого сигнала и длительность любого его участка. С помощью осциллографа можно измерять частоту, фазу и коэффициент модуляции сигнала, а также производить другие комплексные измерения.

Осциллографические измерения отличаются широким диапазоном исследуемых частот (от постоянного тока до СВЧ), возможностью запоминания и последующего воспроизведения сигналов, высокой чувствительностью и возможностью отделения сигналов от помех.

КЛАССИФИКАЦИЯ ОСЦИЛЛОГРАФОВ

По назначению и принципу действия осциллографы разделяются на:
Универсальные, скоростные, стробоскопические, запоминающие и специальные.

По числу одновременно наблюдаемых сигналов их делят на одно-, двух- и многоканальные осциллографы.

По отображающему устройству осциллографы делят на электронно-лучевые и матричные (газоразрядные, плазменные, жидкокристаллические и т.п.).

По принципу обработки информации осциллографы делят на аналоговые и цифровые.

Универсальные осциллографы – приборы общего назначения, предназначенные для наблюдения гармонических и импульсных сигналов. С их помощью можно исследовать одиночные импульсы и пачки импульсов, получать одновременно изображение двух сигналов на одной развертке, детально исследовать любую часть сложного сигнала и многое другое. Они позволяют исследовать сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью 5-7%. Полоса пропускания универсальных осциллографов составляет 300… 500 МГц и более.

Универсальные осциллографы разделяют на две группы: приборы моноблочной конструкции и приборы со сменными блоками.

Моноблочные осциллографы общего назначения – наиболее распространенный тип осциллографов.

Осциллографы со сменными блоками отличаются многофункциональностью, достигаемой за счет применения сменных блоков различного назначения.

Скоростные и стробоскопические осциллографы применяются для исследования переходных процессов в быстродействующих полупроводниковых приборах, интегральных микросхемах и переключающих элементах.

Запоминающие осциллографы могут сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение этих приборов – исследование однократных и редко повторяющихся процессов.

Осциллографы специального назначения предназначены для исследования телевизионных сигналов, они позволяют не только исследовать любую часть телевизионного сигнала с высокой временной стабильностью, но и передавать его в цифровом виде на компьютер для дальнейшей обработки.

ОСНОВНЫЕ БЛОКИ УНИВЕРСАЛЬНОГО ОСЦИЛЛОГРАФА

oscillograf-2.jpg
Рис. 1. Осциллограф С1-107 Общий вид

На рис. 1 показан внешний вид универсального аналогового осциллографа С1-107, а на рис. 2 показана его функциональная схема. Несмотря на разнообразие универсальных осциллографов, их функциональные схемы в целом одинаковы.

Осциллограф состоит из:

  • Электронно-лучевой трубки (ЭЛТ);
  • Канала вертикального отклонения Y;
  • Канала горизонтального отклонения X;
  • Канала Z;
  • Мультиметра;
  • Блока питания.

Канал вертикального отклонения усиливает или ослабляет исследуемый сигнал до значения, удобного для изучения на индикаторе. Положение ручки управления V/дел устанавливает усиление канала Y. Канал состоит из входного делителя, в который входят разъемы, аттенюаторы и переключатели; усилителя, усиливающего сигнал и расщепляющего полярность сигнала для симметричной подачи на пластины ЭЛТ, линии задержки и выходного усилителя. Линия задержки задерживает сигнал на время, необходимое для срабатывания канала горизонтального отклонения, т. е. генератора развертки и усилителя по оси X, чтобы движение луча по горизонтали началось раньше, чем усиленный сигнал поступит на пластины ЭЛТ. Это позволяет наблюдать передний фронт сигнала.

oscillograf-3.jpg
Рис. 2. Функциональная схема осциллографа С1-107

Канал горизонтального отклонения формирует синхронное с исследуемым сигналом пилообразное напряжение для создания оси времени на экране ЭЛТ. Формирователь импульсов запуска вырабатывает короткие запускающие импульсы. Генератор развертки создает линейно-нарастающее напряжение. Скорость нарастания регулируется ручкой Время/дел. Это напряжение поступает на выходной усилитель X) который расщепляет полярность сигнала и усиливает напряжение развертки до значения, необходимого для требуемого масштаба изображения. Положительно нарастающее пилообразное напряжение подается на правую отклоняющую пластину ЭЛТ, а отрицательное – на левую. В результате луч по экрану трубки проходит слева направо установленное количество делений шкалы за единицу времени. При переключении синхронизатора в режим непрерывных колебаний обеспечивается автоколебательный режим работы развертки.

Усилитель внутренней синхронизации усиливает часть исследуемого сигнала и передает его для запуска развертки.

Осциллографы имеют калиброванные развертки и снабжаются для удобства отсчета сетчатыми шкалами, которые наносятся с внутренней стороны экрана трубки. Это избавляет оператора от ошибки из-за явлений параллакса.

В состав осциллографа входят также калибраторы амплитуды и времени, предназначенные для калибровки масштабов каналов вертикального и горизонтального отклонения, и источники питания со стабилизацией.

Многие современные осциллографы имеют встроенные мультиметры, которые позволяют с высокой точностью измерять значения постоянных и переменных напряжений, токов и сопротивлений. Мультиметр осциллографа С1-107 работает следующим образом. Измеряемые переменные токи и сопротивления преобразуются в переменное напряжение. Затем переменные напряжения преобразуются в постоянное напряжение, пропорциональное величине измеряемых параметров. Затем аналоговый сигнал преобразуется в цифровой с помощью АЦП и поступает в знакогенератор, предназначенный для формирования и написания знаков на экране ЭЛТ.

Осциллограф может работать либо в режиме осциллографирования, либо в режиме мультиметра. Совмещение этих режимов в данной модели невозможно.

ЦИФРОВЫЕ ОСЦИЛЛОГРАФЫ

oscillograf-4.jpg
Рис. 3. Цифровой осциллограф

Цифровой осциллограф позволяет одновременно наблюдать на экране сигнал и получать численные значения ряда его параметров с большей точностью, чем это возможно путем считывания количественных величин непосредственно с экрана обычного осциллографа. Это возможно потому, что параметры сигнала измеряются непосредственно на входе цифрового осциллографа, тогда как сигнал, прошедший через канал вертикального отклонения, может быть измерен с существенными ошибками. Эти ошибки могут достигать 10%.

Параметрами, измеряемыми современными цифровыми осциллографами, являются: амплитуда сигнала, его частота или длительность. На экране осциллографа, помимо собственно осциллограмм, отображается состояние органов управления (чувствительность, длительность развертки и т. п.). Предусмотрен вывод информации с осциллографа на печать и другие функциональные возможности. Однако этим не ограничиваются возможности цифровых осциллографов. Сопряжение цифровых осциллографов с микропроцессорами позволяет определять действующее значение напряжения сигнала и даже вычислять и отображать на экране преобразования Фурье для любого вида сигнала.

В устройствах цифровых осциллографов осуществляется полная цифровая обработка сигнала, поэтому в них, как правило, используется отображение на новейших индикаторных панелях.

В современных цифровых осциллографах автоматически устанавливаются оптимальные размеры изображения на экране трубки.

Функциональная схема цифрового осциллографа (рис. 4) содержит аттенюатор входного сигнала; усилители вертикального и горизонтального отклонения; измерители амплитуды и временных интервалов; интерфейсы сигнала и измерителей; микропроцессорный контроллер; генератор развертки; схему синхронизации и электронно-лучевую трубку.

Цифровые осциллографы обеспечивают автоматическую установку размеров изображения, автоматическую синхронизацию, разностные измерения между двумя метками, автоматическое измерение размаха, максимума и минимума амплитуды сигналов, периода, длительности, паузы, фронта и спада импульсов и пр.

Амплитудные и временные параметры исследуемого сигнала определяются с помощью встроенных в прибор измерителей. На основании данных измерений микропроцессорный контроллер производит вычисление требуемых коэффициентов отклонения и развертки и через интерфейс устанавливает эти коэффициенты в аппаратной части каналов вертикального и горизонтального отклонения. Это обеспечивает неизменные размеры изображения по вертикали и горизонтали, а также автоматическую синхронизацию сигнала.

Микропроцессорный контроллер также опрашивает положение органов управления на передней панели, и данные опроса после кодирования снова поступают в контроллер, который через интерфейс включает соответствующий режим автоматического измерения. Результаты измерений индицируются на экране трубки, причем амплитудные и временные параметры сигнала отображаются одновременно.

oscillograf-5.jpg
Рис. 4. Функциональная схема цифрового осциллографа

ПОРТАТИВНЫЕ МУЛЬТИМЕТРЫ-ОСЦИЛЛОГРАФЫ

В последнее время на рынке контрольно-измерительных приборов появилась новая и довольно оригинальная их разновидность: портативные цифровые мультиметры-осциллографы.

Эти малогабаритные и сравнительно недорогие приборы сочетают в себе функцию мультиметра, позволяющего измерять параметры напряжений, токов и сопротивлений, измерять емкости, индуктивности, параметры транзисторов и диодов, и простого осциллографа.

Наиболее распространены на российском рынке мультиметры-осциллографы фирм BEETECH (рис. 5), Velleman, METEX и Tektronix.

oscillograf-6.jpg
Рис. 5. Мультиметр-осциллограф BEETECH 70

oscillograf-7.jpg
Рис. 6. Портативный персональный осциллограф Velleman HPS10

Осциллограф Velleman HPS10 (рис. 6) не обладает функциями мультиметра, но зато это полноценный осциллограф с полосой пропускания 2 МГц и частотой квантования АЦП 10 МГЦ. Прибор имеет высокую чувствительность – от 5 мВ на 12 делений, а диапазон разверток находится в пределах от 200 нс до 1 часа (!) на 32 деления. Прибор может работать от сети через адаптер или от встроенных аккумуляторов, которых хватает на 20 часов работы. Прибор имеет ЖК-дисплей с разрешением 128 х 64 точки. Такой осциллограф позволяет просматривать даже телевизионный сигнал (правда, довольно грубо).

Портативные осциллографы часто поставляются в пластиковых чемоданчиках, в которых кроме самого прибора находятся переходники, щупы, адаптер питания и руководство по эксплуатации.

В большинстве случаев такого прибора вполне достаточно для проведения измерений сигналов при выполнении инсталляций.

РАБОТА С ОСЦИЛЛОГРАФОМ

Современные осциллографы предоставляют богатый набор инструментов для исследования формы сигналов и измерения их параметров.

Проще всего работать с низкочастотными сигналами, например, с сигналами звукового диапазона частот (рис. 7), исследование высокочастотных сигналов и сигналов сложной формы (рис. 8) требует дополнительных навыков.

oscillograf-8.jpg
Рис. 7. Сигнал звуковой частоты на экране цифрового осциллографа

Специализированные телевизионные осциллографы имеют схемы развертки, позволяющие выделить из телевизионного сигнала любой кадр и любую строку, а вот при работе с осциллографами общего назначения нужно выбирать, какими импульсами синхронизации запускать развертку – кадровыми или строчными. Некоторые осциллографы имеют на переключателе режима развертки позиции TV-V и TV-H (запуск кадровыми и строчными синхроимпульсами соответственно). Если таких режимов нет, то для просмотра одного кадра нужно установить скорость развертки в положение 2 мс/дел, а для просмотра одной строки – 10 мкс/дел. Обычно запуск развертки телевизионным сигналом осуществляется при отрицательной полярности импульсов запуска.

При работе с осциллографом важно правильно выбрать режим запуска синхронизации развертки. Чаще всего выбирают режим запуска исследуемым сигналом, т.н. внутреннюю синхронизацию (в двухканальных осциллографах эти режимы называются CH1 и CH2). Если исследуемая аппаратура использует внешние сигналы синхронизации, то логично использовать их для запуска развертки осциллографа. Этот вид синхронизации называется внешней и обычно обозначается EXT. Если исследуются электротехнические устройства, то полезной может оказаться синхронизация от сети – LINE.

Удобный масштаб изображения устанавливается переключателем V/дел.

oscillograf-9.jpg
Рис. 8. Телевизионные сигналы на экране цифрового осциллографа

Двухканальный осциллограф позволяет, как показано на рис. 8, одновременно просматривать различные компоненты телевизионного сигнала.

oscillograf-10.jpg
Рис. 9. Гасящий импульс

oscillograf-11.jpg
Рис. 10. Сигнал цветовой синхронизации

Меняя скорость развертки и значение V/дел можно исследовать общий вид сложного сигнала или «растянуть» отдельный его фрагмент. На рис. 9 показана одна строка телевизионного сигнала, а на рис. 10 – «растянутый» сигнал цветовой синхронизации.

oscillograf-12.jpg
Рис. 11. Измерение длительности

Очень часто при работе с осциллографами возникает необходимость в измерении параметров исследуемых сигналов. Аналоговые осциллографы менее удобны. Для того чтобы определить амплитуду или длительность сигнала, нужно подсчитать, сколько клеток по вертикали или по горизонтали занимает исследуемый сигнал, а затем умножить количество клеток на цену деления переключателя В/дел или Время/дел. Например, если сигнал по вертикали занимает 3,5 клетки, а переключатель В/дел установлен в положение 100 мВ, то амплитуда сигнала составит 350 мВ. Точность такого метода невелика.

Цифровые осциллографы гораздо удобнее. Например, для того чтобы измерить амплитуду импульса на осциллограмме рис. 9, нужно включить режим измерения напряжений, затем подвести курсор 1 к вершине импульса, а курсор 2 – к его основанию. Осциллограф автоматически измерит напряжение, и в правой части экрана появится надпись: Delta – 296 mV.

Аналогично производится измерение длительностей, только в этом режиме курсоры имеют вид вертикальных линий (рис. 11).

На периферии экранов цифровых осциллографов (рис. 7-11) выводится разнообразная служебная информация, позволяющая, не глядя на органы управления прибором, определить, в каком положении находится переключатели В/дел, Время/дел, режимы синхронизации, ознакомиться с отсчетами напряжений, длительностей и пр.

Интерфейсы современных цифровых осциллографов у разных производителей различаются, поэтому перед началом работы следует внимательно изучить Руководство пользователя.

СОВЕТЫ ПО РАБОТЕ С ОСЦИЛЛОГРАФОМ

  • Основным режимом измерений должен быть режим • с закрытым входом (см. рис. 2). Это защитит цепи прибора от повреждения неожиданно высоким напряжением;
  • Перед началом измерений поставьте переключатель В/дел на самый «грубый» предел, последовательно увеличивая усиление, добейтесь нужного размера изображения на экране;
  • Пользуйтесь штатными щупами и пробниками осциллографа, это повышает точность измерений и снижает риск повреждения прибора;
  • Если изображение на экране осциллографа имеет достаточную амплитуду, но рассмотреть его не удается, скорее всего, неверно выбрано положение переключателя Время/дел. Меняя его положение, добейтесь наиболее устойчивого изображения, затем выберите элемент сигнала, по которому будет осуществляться синхронизация с помощью ручки Амплитуда синхронизации. При необходимости измените полярность сигнала синхронизации и вид синхронизации.

КАК ВЫБРАТЬ ОСЦИЛЛОГРАФ?

Осциллограф – это сложный и дорогостоящий прибор, на рынке присутствуют сотни моделей – от самых простых и бюджетных до чрезвычайно дорогих, специализированных и прецизионных приборов. Как сделать правильный выбор и приобрести именно тот осциллограф, который окажется вам полезным при настройке аудио- видеооборудования? В этой главе мы дадим вам несколько советов.

Прежде чем приступить к выбору осциллографа, нужно четко понять, какие задачи предстоит решать с его помощью. При этом необходимо помнить и о перспективах, поскольку осциллограф приобретается не на один год и не для выполнения одной-единственной работы.

1. Какой осциллограф выбрать: аналоговый или цифровой?

Аналоговые осциллографы дают возможность непрерывно наблюдать аналоговый сигнал в реальном масштабе времени, имеют простые, понятные органы управления и невысокую стоимость. Вместе с тем аналоговые осциллографы имеют низкую точность по сравнению с цифровыми, на малых скоростях развертки для них характерно мерцание.

Цифровые осциллографы позволяют «замораживать» картинку на экране, имеют высокую точность измерений, яркое, хорошо сфокусированное изображение сигнала на любой скорости развертки, однако они стоят значительно дороже, сложны в управлении и в отдельных случаях неправильно отображают сигнал.

Неоспоримыми преимуществами цифровых осциллографов также являются возможности измерения напряжений и длительностей сигнала «на лету», а также возможность подключения к внешним регистрирующим устройствам, наличие средств автодиагностики и автокалибровки.

2. Определите необходимую полосу пропускания

Одной из основных характеристик осциллографа, влияющих на выбор прибора, является полоса пропускания, которая зависит от того, какие сигналы и с какой точностью необходимо измерять.

Имейте в виду, что цифровые осциллографы имеют два принципиально разных значения полосы пропускания: полоса для повторяющихся сигналов (или аналоговая) и полоса для однократных сигналов. Большинство реальных сигналов содержит множество высокочастотных гармоник, поэтому широкополосные осциллографы отображают такие сигналы более точно.

При проведении точных измерений временных характеристик величина полосы пропускания осциллографа должна как минимум в три раза превышать значение первой гармоники наиболее высокочастотного из измеряемых сигналов. А для точных измерений амплитуды желательно, чтобы полоса пропускания осциллографа была в десять раз больше, чем частота измеряемого сигнала.

Полоса пропускания аналоговых осциллографов редко превышает 400 МГц., в то время как цифровые осциллографы могут иметь полосу до 50 ГГц.

3. Определите необходимое количество каналов

Наибольшей популярностью пользуются двухканальные осциллографы, однако в последнее время все большее распространение получают четырехканальные модели, поскольку удельная стоимость канала у них меньше, чем у двухканальных моделей, а возможности существенно шире. Однако управлять таким прибором может быть непросто.

Некоторые осциллографы имеют 2 полных канала и 2 дополнительных канала с ограниченным диапазоном чувствительности. В этом случае в осциллографе имеются только 2 аналого-цифровых преобразователя (АЦП), входы которых коммутируются на 4 канала.

4. Определите необходимую частоту дискретизации (для цифровых осциллографов)

Для задач, связанных с изменением однократных или переходных процессов, частота дискретизации имеет первостепенное значение. Параметр «частота дискретизации» обозначает скорость, с которой осциллограф может оцифровывать входной сигнал. Более высокая частота дискретизации определяет более широкую полосу пропускания для однократных сигналов и дает большее временное разрешение.

Большинство производителей цифровых осциллографов используют отношение между частотой дискретизации и полосой для однократных сигналов на уровне 4:1 (если есть средства интерполяции) или 10:1 (без средств встроенной интерполяции) для предотвращения искажения сигнала.

5. Определите необходимый объем памяти (для цифровых осциллографов)

Требуемый объем памяти зависит от общей длительности сигнала, параметры которого необходимо исследовать, и желаемого разрешения по времени. Если исследуются сигналы в большом промежутке времени с большим разрешением, то потребуется большая память. Большой объем памяти позволит использовать более высокую частоту дискретизации на медленных скоростях развертки, уменьшая вероятность получения искаженного сигнала и обеспечивая получение большего объема информации о сигнале.

Следует иметь в виду, что увеличение объема памяти может привести к сильному замедлению работы осциллографа, поскольку ему потребуется обрабатывать больший массив данных.

6. Определите требуемые возможности по запуску прибора

Для большинства пользователей осциллографов общего назначения просто запуска по фронту (перепаду) сигнала часто бывает недостаточно. Для решения многих задач бывает также полезно иметь дополнительные возможности по запуску, позволяющие обнаружить события, которые иначе очень трудно отследить. Возможность запуска по телевизионному сигналу позволяет настроить прибор на определенное поле или строку.

7. Определите требуемые возможности по обнаружению импульсных помех

В принципе, любой аналоговый осциллограф всегда способен отобразить импульсные помехи и джиттер. Вопрос состоит лишь в том, достаточно ли скорости нарастания в канале вертикального отклонения (в конечном счете – полосы пропускания) и яркости осциллограммы для исследования этих процессов. Осциллографы с возможностями запуска по импульсной помехе позволяют выделять трудно обнаруживаемые импульсные помехи и производить по ним запуск осциллографа. Эта дополнительная возможность очень полезна при поиске причины ненормальной работы исследуемой схемы.

8. Дополнительные возможности

Многие современные цифровые осциллографы могут выполнять функцию анализатора спектра, однако в области звуковых частот она реализована, как правило, плохо.

Большинство цифровых и аналого-цифровых осциллографов могут взаимодействовать с персональным компьютером, принтером или плоттером через интерфейсы GPIB, RS-232 или Centronics. В последние годы все чаще используется интерфейс USB.

Многие современные цифровые осциллографы оснащены дисководами или разъемами для флэш-памяти, которые позволяют сохранять изображения экрана с осциллограммами (в различных форматах) и результаты измерений в числовом виде, а затем быстро перенести их в компьютер для дальнейшей обработки. Эти возможности позволяют сэкономить время, когда, например, требуется вставить изображение с экрана осциллографа в отчет или скопировать данные сигналов электронную таблицу.

9. Оцените удобство работы с прибором

Попробуйте поработать с прибором, оцените, насколько он прост в работе, возможно ли интуитивное управление прибором в то время, когда основное внимание уделяется исследуемой схеме? Оцените скорость реакции экрана, а также время, которое затрачивает осциллограф на выполнение команд. Есть ли у прибора память команд?

ИЗМЕРЕНИЕ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

При контроле технического состояния радиоэлектронной аппаратуры важное место занимает измерение амплитудно-частотных характеристик различных ее узлов.

При снятии амплитудно-частотных характеристик (АЧХ) приборов или их узлов удобно представлять их в виде четырехполюсника. Тогда АЧХ – это зависимость модуля (абсолютного значения) коэффициента передачи четырехполюсника от частоты сигнала.

Коэффициент передачи – это отношение мощности или напряжения на выходе четырехполюсника к мощности или напряжению на его входе.

Если выходное напряжение меньше входного, при прохождении сигнала через четырехполюсник происходит ослабление сигнала. Такой четырехполюсник называется пассивным (пример – пассивный электрический фильтр), а коэффициент передачи является коэффициентом ослабления.

При выходном напряжении больше входного происходит усиление сигнала, и коэффициент передачи является коэффициентом усиления. Четырехполюсник в этом случае называется активным (пример – усилитель сигналов звуковых частот).

Значение коэффициента передачи четырехполюсника и значение частоты сигнала, на которой проводилось его определение, образуют точку в системе координат, а совокупность таких точек образуют кривую АЧХ в требуемом диапазоне частот. На рис. 12 в качестве примера приведена АЧХ антенного усилителя, работающего в диапазоне телевизионного вещания.

oscillograf-13.jpg
Рис. 12. АЧХ антенного усилителя

МЕТОДЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

Измерение параметров амплитудно-частотных характеристик четырехполюсников проводится с помощью генератора качающейся частоты (ГКЧ) и индикаторного устройства.

Частота генератора плавно изменяется по определенному закону в требуемой полосе частот, а на индикаторе осциллографического типа воспроизводится кривая АЧХ.

Структурная схема простейшего автоматического измерителя АЧХ приведена на рис. 13.

oscillograf-14.jpg
Рис. 13. Структурная схема автоматического измерителя АЧХ

Сигнал с ГКЧ подается на вход исследуемого четырехполюсника. Из-за наличия у этого четырехполюсника зависимости модуля коэффициента передачи от частоты сигнала на его выходе сигнал модулирован по амплитуде. Огибающая этого сигнала, выделенная на детекторной головке, входящей в состав индикаторного устройства, управляет отклонением луча индикатора по вертикали, рисуя кривую АЧХ.

Управление частотой ГКЧ и отклонением луча индикатора по горизонтали осуществляется блоком модулирующего напряжения, одновременно синхронизирующим работу этих двух узлов.

В измерителе АЧХ, построенном по такой структурной схеме, горизонтальное положение луча на экране индикатора соответствует частоте на входе исследуемого четырехполюсника, а вертикальное – значению модуля коэффициента передачи на этой частоте. Таким образом, на экране автоматически вычерчивается кривая АЧХ исследуемого четырехполюсника.

Блок автоматической регулировки амплитуды служит для обеспечения постоянства уровня выходного сигнала во всем диапазоне качания частоты.

Часть сигнала с ГКЧ подается на блок частотных меток, в котором вырабатывается целый спектр калибровочных частот в пределах рабочего диапазона ГКЧ. В момент совпадения частоты ГКЧ с любой из этих частот образуются сигналы, которые подаются в индикаторный блок и наблюдаются на экране в виде амплитудных меток.

Для калиброванного изменения выходного напряжения ГКЧ служит аттенюатор.

В зависимости от ширины полосы качания приборы подразделяются на узкополосные, среднеполосные, широкополосные и комбинированные. Узкополосные измерители АЧХ обеспечивают полосу качания, составляющую доли и единицы процента центральной частоты, а широкополосные – полосу качания, составляющую полный диапазон частот прибора. Комбинированные совмещают в себе функции как узкополосных, так и широкополосных приборов.

Измерители АЧХ могут иметь линейный и логарифмический масштаб по амплитуде.

Наиболее широкое применение находят универсальные измерители АЧХ, позволяющие решать широкий круг измерительных задач. На рис. 14 показан измеритель АЧХ Х1-50 отечественного производства, который применяется при настройке и испытании телевизионной техники. Наличие в его составе встроенного генератора сетчатого поля позволяет осуществлять проверку линейности телевизионного изображения, а с помощью внешнего измерительного моста – проверку согласования антенных выводов.

oscillograf-15.jpg
Рис. 14. Измеритель АЧХ Х1-50

СОВЕТЫ ПО РАБОТЕ С ИЗМЕРИТЕЛЯМИ АЧХ

  • Важную роль играет согласование выхода прибора с нагрузочным сопротивлением. Если на частотах до десятков мегагерц рассогласование приводит лишь к уменьшению уровня выходного сигнала, то на более высоких частотах – к увеличению неравномерности выходного сигнала в полосе качания. Согласование входа исследуемого устройства возможно путем подключения на конце кабеля, соединяющего их с выходом измерителя АЧХ, сопротивления, близкого к волновому. Если исследуемый четырехполюсник имеет низкоомный вход с волновым сопротивлением, отличным от выходного сопротивления измерителя АЧХ, то его необходимо соединять с прибором через согласующее устройство.
  • При низкоомном выходе исследуемого устройства, например фильтра, телевизионного антенного усилителя, коаксиальной линии передачи, его следует подключать к входу индикаторного устройства через согласованную детекторную головку, а при отличии выходного сопротивления четырехполюсника от сопротивления нагрузки детекторной головки между ними необходимо устанавливать согласующее устройство.
  • При исследовании АЧХ усилителей возможны искажения, вызванные их перегрузкой, в результате чего вершина кривой АЧХ будет выглядеть более плоской, чем на самом деле. В этом случае на вход усилителя нужно подавать сигнал с минимальным уровнем.
  • При настройке многокаскадных устройств, например усилителей промежуточной частоты, видеоусилителей, когда необходимо просмотреть АЧХ каждого каскада в отдельности, используйте высокоомную детекторную головку из комплекта прибора.
  • Если ваш измеритель АЧХ имеет двухканальный индикатор, можно настраивать АЧХ устройств, сравнивая их с эталонными. Для этого сигнал с выхода измерителя АЧХ подается одновременно на входы настраиваемого и эталонного устройств, а их выходы подключаются к отдельным каналам индикатора, усиление которых устанавливается одинаковым. Изменяя настройки устройства, добиваются совмещения его АЧХ с эталонной.
  • Наряду с исследованием АЧХ четырехполюсников измерители АЧХ позволяют решать ряд других измерительных задач, таких как измерение добротности колебательного контура, крутизны АЧХ, полных сопротивлений и КСВ нагрузки, исследование кабелей.

ИЗМЕРЕНИЕ ПАРАМЕТРОВ СПЕКТРА РАДИОСИГНАЛОВ

В практике работы со сложной современной радиоэлектронной аппаратурой визуальное наблюдение формы сигнала с помощью осциллографа иногда оказывается недостаточным. Более чувствительным и информативным является анализ спектральных характеристик сигналов. Особенно важным является знание спектрального состава сигналов в настоящее время, когда остро встает проблема электромагнитной совместимости радиоэлектронной аппаратуры, когда требуется определить параметры сигнала на входе и выходе линии его передачи.

В настоящее время известны два основных метода измерения характеристик спектра сигналов: вычисление преобразований Фурье и с помощью цифровых фильтров.

Преобразование Фурье позволяет представить сложный сигнал как совокупность гармонических синусоидальных колебаний с различными частотами и амплитудами.

На практике это означает, что практически любой сигнал можно разложить на конечное число гармоник с частотами oscillograf-17.jpg, амплитудой oscillograf-16.jpg и фазой – oscillograf-18.jpg, где:

k=1, 2, 3…;
f0 – частота первой гармоники;
T – время;
ak и bk – коэффициенты преобразования.

График зависимости величин oscillograf-19.jpg в зависимости от k называют линейчатым спектром Фурье. Пример такого спектра, полученного аналитически, показан на рис. 15, а фото экрана анализатора спектра – на рис. 16.

oscillograf-20.jpg
Рис. 15. Линейчатый спектр Фурье

oscillograf-21.jpg
Рис. 16. Спектр сигнала, излучаемого АС

Таким образом, спектр сигнала характеризуется частотой, амплитудой и фазой его составляющих, которые и измеряются при создании и эксплуатации радиоэлектронной аппаратуры и электронных компонентов.

Кроме этих основных характеристик спектр сигналов характеризуется формой и шириной.

Бурное развитие вычислительной техники уже сейчас позволяет создавать анализаторы спектра на цифровом фильтре, эффективно работающие в низкочастотном (звуковом) диапазоне, что для анализаторов старых типов было почти неразрешимой задачей. Цифровые фильтры универсальны, стабильны, не нуждаются в подстройке, имеют широкий рабочий диапазон. Можно с уверенностью предположить, что анализаторы спектра этого типа в ближайшем будущем будут доминировать в этом сегменте рынка контрольно-измерительных приборов.

Как охлаждать будем? Жидкость или воздух: «за» и «против» Как охлаждать будем? Жидкость или воздух: «за» и «против»
Системы охлаждения для видеостен на основе проекционных кубов.
Отображать 4К контент или быть 4К устройством? Есть разница! Отображать 4К контент или быть 4К устройством? Есть разница!
В данной статье будут рассмотрены особенности разрешения в формате 4К, на которые следует обратить внимание.
Передача аудио- и видеосигналов по IP: что это дает proAV? Передача аудио- и видеосигналов по IP: что это дает proAV?
Часто мы слышим фразу "передача аудио- и видеосигнала по IP-сетям". Но каково ее истинное значение для коммерческих AV-с...
Визуальные технологии: типы сигналов и методы их сжатия Визуальные технологии: типы сигналов и методы их сжатия
В этой публикации речь пойдет о разных типах видеосигналов, а также о цифровых сигналах и методиках сжатия.
Многофункциональные помещения: как спроектировать грамотно? Многофункциональные помещения: как спроектировать грамотно?
Могут ли многофункциональные помещения в сегодняшних условиях корпоративной среды обеспечить свое многоцелевое назначение?
Как заставить зал «зазвучать»: азы акустической подготовки Как заставить зал «зазвучать»: азы акустической подготовки
Акустическая подготовка помещения – процесс, требующий от специалиста хорошего знания техники и чуткого музыкального слуха.
Все статьи
Видео
Вебинар "Все об аудио оснащении переговорных комнат"
Вебинар " Возможности аудио-видео коммутации LightWare"
Все видео
BOSCH: Каталог конференц-систем 2016/ноябрь
BOSCH: Каталог конференц-систем 2016/ноябрь
Каталог конференц-систем и оборудования для синхронного перевода, формат А4, 50 полос.
ECLER: каталог оборудования 2016
ECLER: каталог оборудования 2016
Полная продуктовая линейка аудиооборудования Ecler, 196 полос, А4, английский язык.
Все файлы
Акустика в залах совещаний: идеальный звук – совсем не сложно
Стюарт Стивенс
“Проектный менеджер компании Shure Distribution UK, Стюарт Стивенс - о различных методах улучшения акустики в залах для совещаний.”
Стюарт Стивенс
Проектный менеджер Shure Distribution UK
Распределенные звуковые системы. Не так просто, как кажется
Аджигитов Максим
“Задача этой статьи - развенчать миф о том, что проектирование системы фонового звука не стоит серьезных временных и умственных затрат.”
Аджигитов Максим
Ведущий инженер по акустике ГК DIGIS
Звуко-инженеры. Почему трудно работать вместе?
Ратмановас Александрас
“В чем состоят сложности, связанные со звуком, если как физическое явление он был объяснен еще 68 лет назад? Разбираемся вместе.”
Ратмановас Александрас
Инженер по звуку
Все мнения